Authenticating Computation on Groups: New Homomorphic Primitives and Applications

نویسندگان

  • Dario Catalano
  • Antonio Marcedone
  • Orazio Puglisi
چکیده

In this paper we introduce new primitives to authenticate computation on data expressed as elements in (cryptographic) groups. As for the case of homomorphic authenticators, our primitives allow to verify the correctness of the computation without having to know of the original data set. More precisely, our contributions are two-fold. First, we introduce the notion of linearly homomorphic authenticated encryption with public verifiability and show how to instantiate this primitive (in the random oracle model) to support Paillier’s ciphertexts. This immediately yields a very simple and efficient (publicly) verifiable computation mechanism for encrypted (outsourced) data based on Paillier’s cryptosystem. As a second result, we show how to construct linearly homomorphic signature schemes to sign elements in bilinear groups (LHSG for short). Such type of signatures are very similar to (linearly homomorphic) structure preserving ones, but they allow for more flexibility, as the signature is explicitly allowed to contain components which are not group elements. In this sense our contributions are as follows. First we show a very simple construction of LHSG that is secure against weak random message attack (RMA). Next we give evidence that RMA secure LHSG are interesting on their own right by showing applications in the context of on-line/off-line homomorphic and network coding signatures. This notably provides what seems to be the first instantiations of homomorphic signatures achieving on-line/off-line efficiency trade-offs. Finally, we present a generic transform that converts RMA-secure LHSG into ones that achieve full security guarantees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Impossibility of Group Homomorphic Encryption in the Quantum World

Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly...

متن کامل

An update on Scalable Implementation of Primitives for Homomorphic EncRyption – FPGA implementation using Simulink

Accellerating the development of a practical Fully Homomorphic Encryption (FHE) scheme is the goal of the DARPA PROCEED program. For the past year, this program has had as its focus the acceleration of various aspects of the FHE concept toward practical implementation and use. FHE would be a game-changing technology to enable secure, general computation on encrypted data, e.g., on untrusted off...

متن کامل

Attacking FHE-based applications by software fault injections

The security of fully homomorphic encryption is often studied at the primitive level, and a lot of questions remain open when the cryptographer needs to choose between incompatible options, like INDCCA1 security versus circular security or search-to-decision reduction. The aim of this report is to emphasize the well known (and often underestimated) fact that the ability to compute every functio...

متن کامل

Parleda: a Library for Parallel Processing in Computational Geometry Applications

ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...

متن کامل

An update on SIPHER (Scalable Implementation of Primitives for Homomorphic EncRyption) - FPGA implementation using Simulink

Practical Fully Homomorphic Encryption (FHE) would be a game-changing technology to enable secure, general computation on encrypted data, e.g., on untrusted off-site hardware. Recent theoretical breakthroughs demonstrated the existence of Fully Homomorphic Encryption schemes [1,4]. However, FHE remains impractical because current implementations are many orders of magnitude too slow for practic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014